Prospecting metagenomic enzyme subfamily genes for DNA family shuffling by a novel PCR-based approach.
نویسندگان
چکیده
DNA family shuffling is a powerful method for enzyme engineering, which utilizes recombination of naturally occurring functional diversity to accelerate laboratory-directed evolution. However, the use of this technique has been hindered by the scarcity of family genes with the required level of sequence identity in the genome database. We describe here a strategy for collecting metagenomic homologous genes for DNA shuffling from environmental samples by truncated metagenomic gene-specific PCR (TMGS-PCR). Using identified metagenomic gene-specific primers, twenty-three 921-bp truncated lipase gene fragments, which shared 64-99% identity with each other and formed a distinct subfamily of lipases, were retrieved from 60 metagenomic samples. These lipase genes were shuffled, and selected active clones were characterized. The chimeric clones show extensive functional and genetic diversity, as demonstrated by functional characterization and sequence analysis. Our results indicate that homologous sequences of genes captured by TMGS-PCR can be used as suitable genetic material for DNA family shuffling with broad applications in enzyme engineering.
منابع مشابه
Family shuffling with single-stranded DNA.
1. Introduction Family shuffling, which generates chimeric progeny genes by recombining a set of naturally occurring homologous genes, is an extremely powerful approach for in vitro protein evolution. In comparison with other in vitro protein evolution methods, family shuffling has the advantage of sampling a larger portion of the sequence space that has been proven functionally rich by nature....
متن کاملLipase diversity in glacier soil based on analysis of metagenomic DNA fragments and cell culture.
Lipase diversity in glacier soil was assessed by culture independent metagenomic DNA fragment screening and confirmed by cell culture experiments. A set of degenerate PCR primers specific for lipases of the hormone-sensitive lipase family was designed based on conserved motifs and used to directly PCR amplify metagenomic DNA from glacier soil. These products were used to construct a lipase frag...
متن کاملOptimization of DNA shuffling for high fidelity recombination.
A convenient 'DNA shuffling' protocol for random recombination of homologous genes in vitro with a very low rate of associated point mutagenesis (0.05%) is described. In addition, the mutagenesis rate can be controlled over a wide range by the inclusion of Mn2+or Mg2+during DNase I digestion, by choice of DNA polymerase used during gene reassembly as well as how the genes are prepared for shuff...
متن کاملProspecting for novel lipase genes using PCR.
A PCR method suitable for the isolation of lipase genes directly from environmental DNA is described. The problems associated with the low levels of similarity between lipase genes were overcome by extensive analysis of conserved regions and careful primer design. Using this method, a lipase gene (oli-lipase) was isolated directly from environmental DNA. This lipase showed less than 20% similar...
متن کاملHigh efficiency family shuffling based on multi-step PCR and in vivo DNA recombination in yeast: statistical and functional analysis of a combinatorial library between human cytochrome P450 1A1 and 1A2.
The design of a family shuffling strategy (CLERY: Combinatorial Libraries Enhanced by Recombination in Yeast) associating PCR-based and in vivo recombination and expression in yeast is described. This strategy was tested using human cytochrome P450 CYP1A1 and CYP1A2 as templates, which share 74% nucleotide sequence identity. Construction of highly shuffled libraries of mosaic structures and red...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 285 53 شماره
صفحات -
تاریخ انتشار 2010